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1 SUPPLEMENTARY TABLES

Table 1. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging data
The table shows average PLSC weights and average PLSC-RP weights for causal voxels and causal SNPs as
compared to non-causal voxels and non-causal SNPs. Causal voxels and causal SNPs receive higher weights than
non-causal voxels and SNPs. Average weights are very similar for PLSC and PLSC-RP.

dimensionality
PLS analysis

|w̄MRI| for |w̄MRI| for |w̄SNP| for |w̄SNP| for
of MRI data causal voxels non-causal voxels causal SNPs non-causal SNPs

1,000
PLSC 0.0503 0.0256 0.3395 0.0976
PLSC-RP 0.0506 0.0255 0.3314 0.0995

10,000
PLSC 0.0152 0.0078 0.3863 0.0901
PLSC-RP 0.0152 0.0078 0.3710 0.0911

20,000
PLSC 0.0116 0.0054 0.3440 0.0934
PLSC-RP 0.0114 0.0055 0.3266 0.0919

30,000
PLSC 0.0104 0.0044 0.3877 0.0881
PLSC-RP 0.0104 0.0045 0.3856 0.0898

40,000
PLSC 0.0089 0.0041 0.3663 0.0928
PLSC-RP 0.0086 0.0041 0.3533 0.0937

50,000
PLSC 0.0084 0.0039 0.3143 0.0993
PLSC-RP 0.0086 0.0039 0.3123 0.1019

70,000
PLSC 0.0061 0.0033 0.3325 0.1005
PLSC-RP 0.0058 0.0034 0.3226 0.0973

90,000
PLSC 0.0058 0.0029 0.2873 0.1074
PLSC-RP 0.0057 0.0029 0.2772 0.1091
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Table 2. Average PLSC and PLSC-RP weights for the fMRI face-matching task
Average weights for causal and non-causal voxels and SNPs are very similar for PLSC and PLSC-RP.

PLS analysis |w̄MRI| for causal voxels |w̄MRI| for non-causal voxels |w̄SNP| for causal SNPs |w̄SNP| for non-causal SNPs

PLSC 0.0059 0.0017 0.5768 0.0296
PLSC-RP 0.0059 0.0017 0.5757 0.0467

Table 3. Average SNP weights for PLSC and PLSC-RP in the Sorbs
The table shows average PLSC weights and average PLSC-RP weights for causal and non-causal SNPs. In addition,
it is illustrated how serum vaspin and body height are weighted in the first component of the phenotype weight
profile.

PLS analysis |wVaspin| |wHeight| |w̄SNP| for causal SNPs |w̄SNP| for non-causal SNPs

PLSC 0.7068 0.0285 0.0093 0.0013
PLSC-RP 0.7068 0.0294 0.0093 0.0013

Table 4. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging and high-dimensional
SNP data
Causal voxels and causal SNPs receive higher weights than non-causal voxels and SNPs. Average weights are very
similar for PLSC and PLSC-RP.

dim. of dim. of
PLS analysis

|w̄MRI| for |w̄MRI| for |w̄SNP| for |w̄SNP| for
MRI data SNP data causal voxels non-causal voxels causal SNPs non-causal SNPs

1,000 1,000
PLSC 0.0405 0.0288 0.0947 0.0246
PLSC-RP 0.0435 0.0279 0.0985 0.0245

10,000 10,000
PLSC 0.0158 0.0077 0.0370 0.0080
PLSC-RP 0.0151 0.0078 0.0368 0.0079

20,000 20,000
PLSC 0.0116 0.0054 0.0256 0.0056
PLSC-RP 0.0106 0.0056 0.0240 0.0056

40,000 40,000
PLSC 0.0092 0.0041 0.0179 0.0040
PLSC-RP 0.0092 0.0040 0.0187 0.0040

50,000 1,000
PLSC 0.0078 0.0040 0.1073 0.0244
PLSC-RP 0.0070 0.0039 0.0952 0.0246

1,000 50,000
PLSC 0.0395 0.0290 0.0150 0.0036
PLSC-RP 0.0361 0.0293 0.0142 0.0036
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2 SUPPLEMENTARY EQUATIONS

PLSC-RP for dimensionality reduction in X1 OR X2

For traditional PLSC, SVD is used to decompose the cross-product matrix A of X1 and X2, which
are both standardized column-wise, into three matrices:

cov(X1,X2) = A = X
′

1X2 = W1SW
′

2. (1)

Assumed that X1 is high-dimensional, RP transforms X1 to a lower dimensional space via the following
transformation:

X1RP = X1 · R, (2)

where R is a random matrix and X1RP is the low-dimensional subspace of X1 with desired lower dimen-
sion k. If we perform PLSC to decompose the cross-product matrix of X1RP and X2, we obtain the weights
W2 for data set X2, but weights W1RP for the reduced data set X1RP . To transform the weights W1RP back
to the original space, that is W1, we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

cov(X1,X2) = A = X
′
1X2 = W1SW

′
2.

If we extend both sides of the equation by w2i , we obtain

A ·w2i = W1SW
′
2 ·w2i .

Since W2 is column-wise orthogonal, we have

A ·w2i = w1isiw
′
2i
·w2i .

Rearranging yields

1

si
·A ·w2i = w1i ·w

′
2i
·w2i .

Since the L2-norm for a vector a is given by

|a| =
√
a2
1 + a2

2 + . . . + a2
n,

|a|2 = a2
1 + a2

2 + . . . + a2
n,

we obtain the weights w1i , i = 1, . . . , p, p = min(k, d2), as follows:

w1i =
1

si · |w2i|2
·A ·w2i . (3)
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PLSC-RP for dimensionality reduction in X1 AND X2

Assumed that both X1 and X2 are high-dimensional, RP transforms X1 and X2 to lower dimensional
spaces via the following transformation:

X1RP = X1 · R1,

X2RP = X2 · R2.
(4)

If we perform PLSC to decompose the cross-product matrix of X1RP and X2RP , we obtain weights W1RP

and W2RP for the low dimensional subspaces. To transform the weights W1RP back to the original space
W1, we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

cov(X1,X2RP) = W1SW
′
2RP

.

If we extend both sides of the equation by w2RPi
, we obtain

cov(X1,X2RP) ·w2RPi
= W1SW

′
2RP
·w2RPi

.

Since W2RP is column-wise orthogonal, we have

cov(X1,X2RP) ·w2RPi
= w1isiw

′
2RPi
·w2RPi

.

Rearranging yields

1

si
· cov(X1,X2RP) ·w2RPi

= w1i ·w
′
2RPi
·w2RPi

.

Thus, for the weights w1i , i = 1, . . . , p, p = min(k1, k2), we obtain

w1i =
1

si · |w2RPi
|2
· cov(X1,X2RP) ·w2RPi

. (5)

Following the same logic, the weights W2RP are transformed back to the original space W2 by rearranging
the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation

cov(X1RP ,X2) = W1RPSW
′
2.

If we extend both sides of the equation by w
′
1RPi

, we obtain

w
′
1RPi
· cov(X1RP ,X2) = w

′
1RPi
·W1RPSW

′
2.
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Since W1RP is column-wise orthogonal, we have

w
′
1RPi
· cov(X1RP ,X2) = w

′
1RPi
·w1RPi

· si ·w
′
2i

.

Rearranging yields

1

si
·w′

1RPi
· cov(X1RP ,X2) = w

′
1RPi
·w1RPi

·w′
2i

.

Thus, for the weights w2i , i = 1, . . . , p, p = min(k1, k2), we obtain

w
′

2i
=

1

si · |w1RPi
|2
·w

′

1RPi
· cov(X1RP ,X2),

w2i =
1

si · |w1RPi
|2
· (cov(X1RP ,X2))

′
·w1RPi

.

(6)
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